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The currents associated with the supercollformal symmetries
are defined as moments of the supercurrent,
the current (non-j Conservation equations are‘[;O;l:::
the generalized trace of the supercurrent, DUVa& , is found.
The superconformal anomalies are shown to have coefficients
given by ~ of the Callan-Symanzik equation. 11 super QED
there is an additonal U(l) axial current whose +nomaly has
a coefficient with no radiative corrections.

INTRODUCTION

Ill1974 Ferrara and Zumino (1) discovered the existence of a supercurrent whose
compol~cnts contained the R-symmetry (chiral) current, the restricted supersymmetry
current and the energy--momentum tensor. A further clarification of the relation-
ships between these component currents and their various (non-) conservation
equations was desired. In particular the idler-Bardeen theorem (2) predicts chat
the coefficj.ent of the anomaly for a suitably defined axial current has no
radiative corrections. While on the other hand the scaling al~omalies given by t~,e
trace of ~he energy-momentum tensor have a coefficient 6 of the Callan-Symanzik
equation. However if the various currel~ts as well as their anomalies are to be
related by supersymmetry the coefficie[lts of the anomalies should be the same
(l~pto numerical factors),

In references (3) and (4) the supercurrent and axial cllrrent were studied in
supersymmetric QED, It was shown that all of the superconformal currents are
given L; moments of the supercurrent, Va& , and all (non-) c.ollservatiol~equatioll~
of these currents were known once the generalized trace, Da”~; , of thL:5,!poi-
current was found. This is completely analogous to the ordinary field theoretic
case where all of the conformal currents are given by moments of the energy-

!
m mentum tensor, Tpv, and hel~ceall conformal anomolies were given by its trace,
TA . The generalized trace was then found to have an al~omaly whose coefficient
was given by (3of the Callan-Symanzik equation. In particular the R-symmetry
axial current defined so that it was a component of the supercurrent had all
anomaly coefficient of 136 In super QED there was an additonal chlral U(1)
current whose generator commutes with the superconformal generators. Its anomaly
coefficler,t was shown to have no radiative corrections.

In the first section of this talk the supersymmetrlc QED model is described 111the
tree approximation. The action and its gauge il~varlance is outlined, Then the
superconforrnal symmetries and associated currents are discussed and the super
current defined. Finally the additiol~al ax.al current is given. In the second
section the renormalization of super QED is discussed. The normal product
equations of motion are given as well as the Callan-Aymanzik equation. Then the

renormalized super current Is defined and its trace equation is found. The trace
anomaly coefficient is seen to be !3/g. Finally the renormalized axial current is
defined anc the Adler-Barrieen theorem is proven.



In what fellows in order to simplif’f the technicalities it has been assumed that
one could take physical matrix elemients of operators as well as off-shell vacuum
expectation values of time ordered products of them. Since there are massless
fields in tilemodel this in reality would be quite complicated to show and is
assumed here only for convenience; References (3) ~nd (4) contain the rigorous
off-shell calculations. Also I would like to formally mention that all of the
results reported here have been found in collaboration with Olivier Piguet and
Klaus Sibold both at the University of KarLsruhe and are reported in References
(3) and (4).

1. SITPERSMETRIC QED: TREE APPROXIMATION

The fields of the model are ~, a massless vector superfield containing the photoc
and yhotino, and $t,’$~,massive charged chiral matter fields COIItaiIling charged
fermi fields as well as charged scalar and pseudoscalar fields. The action is
invariant under parity, charge conjugation, Poincar6, gauge and supersymmetry
transformations

(1.1)

J+4im dS$+@ + 4im
f

d~$+$

where % = g6ijDQ$ . In order to quantize the model a gauge fixing term must be
added to the invariant acticn; we add a supersymetric Stuckelberg term

I
i

‘-z -1
dVDD$~~$ . (1.2)

g

The total action is given by

I= Iinv+I ~

(1.3)

where we have explicitly chosen the a = 1 (Feynmall)gauge in order to avoid the
IR diverge~~ies of the general gauge, and use of the identity 862 = D;~L)-
1/2 (DD + DD)2 has been made.

The structural relations r,seded in order to derive current (ncn-) conservation
equations are the equations of motion

61 -
1) 6$(2)

o which implies

(1.4)

2) :;+(2)= O which implies



i)E[@+ego] + 4irn@ = O (1.5)

and similarly for @+,@ .
--

Note that we can define the source of the vector field’s equation of motion as
the gauge current j(z)

-$OeJ(z) = [@+O+eg$ _ - -g@](z) . (1.6)

The chiral matter fields’ equations of motion then imply current conservation

1) DJj = O
(1.7)

2) fi~j= O .

Applying this to DD ~ = O and !! $$ = O yields
$“

the gauge Ward identities which
imply that the longitu lnal vector field decouples from the theory

1) ~2DD$ = o

(1.8)
2) a2i5E~ = o .

In
to
of

order to grade the conformal algebr: an additional Bose generator corresponding
the (chiral) R-transformations must be added to the algebra, The generators
the super conformal symmetries are given by

Bose
PD :

M
~v :

D:

h:
R:

Generators
space-time translations

Lorentz transformations

dilation transformation

conformal transformation

R-transformations

Fermi Generators

QU,Q;: translational (Restricted) SUSY

({Qa,6&} = +’dpp)
S&: conformal (special) SUSY

These generators are represented by linear superspace differential oparacrrs on

the superfields that is for generator G

(1.9)

etc.
where d = scale dimensio~ of $

n = R-weight of @ and for (anti-) (chiral)fields n = (+ Z d)(- ~ d) and
n - ()for vector fields. Applying these transformations to the3action3we find



1) 6:1=0, ~6QI = O etc.

and in particular

J6RI=i~m
----

dx[DD@+$_ - DD$+$-

(1.10)

f

---
= dx[DDS - DDS] .

This can be written more supersymmetrically by noting that the only x-constant
superfield of charges is

and (1.11)

Noether’s theorem ~ells us that all superconformal currents can be written as
moments of the super current V associated with the above transformation (1.11):

. D ,-
Vu . O; v , V*

cm
= J Od”v

Cici 2 cmp

.
R= d 3xV0

.

v R ,Qa,~m,T
!J Dulluv”

The gauge invariant supercurrent is given by

V ● = -!$ [DU,fi;][@+O+egO + $ @ e-g+]
cm .-

(1.12)

(1.13)

- ~-EED&$DD5;$ .

Since a“vu = - +- {Du,6&}v~~ all (non-) conservation equations follow from the
generalized trace equation, D%u; , alone. That is from tileequatio~ls uf motio~l

16i
D%a; = - ~ m~;$+~

.
161

~aVa~ = - ~ mDaO+O
(1.14)

(1.15)

which implies



Finally corresponding to the chiral rotation of the matter fields

is the axial current superfield ~;

The equations of motion imply

1) DDIS = - 8im@+0

and the axial current. non-conservation equaiton

aJ”= [DD,~~]15
p5

. . 8im[DD;+@_ - 55$+d_] .

(1.17)

(1.18)

(1.19)

2. SUPERSY?RIETRIC QED: RESORMALIZATION

The renormalized vacuum expectation value of time ordered products of fields ‘s
constructed through tl~cGell-Mann-Low expansion and the supersymmetric Bogoliubov-
Parasiuk-Hepp-Zimmermann momentum space subtraction scheme (5). Intermediate
no~rnalization conditions are used so that the only counterterm is the (finite)
chiral mass coullterterm, “a” which fixes the pole of the chiral field propagator
at ~2 . The renormalized normal product equations of motion are

&I
1) N3[O+(Z) ~(~ ] = o which implies

+

2) N@ ]=0 etc.

where the N~ denotes the Zirrimermalll~normal product with d , indicating how
many momentum space subtractions to make, being greater than or equal to the
dimension of the composite field. These equations have the form of the naive
Euler-Lagrange equarions however the mass terms are oversubtracted (N rather
than N2)! The other structural relation needed in order to study the3tr~ce
equations is the Zimrnermanllidentity relating “IJ3[@+I$_l to N2[$+@-] this is
the local Callan-Synanzik (C-S) equation

(2.2)



8,Y,u,8 the Callan-Symanzik functions. Consider the one-particle irreducible
ordered function of this equation with b-vector fields and (~)f (anti-;
al matter fields; integrate this over the chiral measure and add to the anti-
al equation. This yields the global Callan-Symanzik equation

(2.3)

:h

J J
A* = i dSNj[O+$-] + i d~Nj[@+O_] ,

soft mass insertion.

le renorrnalized supercurrent is then defined by

v“
“(gree)

-&d#u&[$+$. - ‘$+$-1 “ (2.4)
cm au

:he normal product equations of motion and the Zimmerman identity yield the
supercurrent generalized trace equation

.

fiaN3[Va&] = - 2DaS

(2.5)

with ;; a gauge invariant normal product of WTJ. This implies that all
superconformal anomalies go as B/g .

Finally the renormalized axial current is defined by

15 ~ [1 + 4y @al ]I(tree) + 26 (m+a)
am 5

[++$_ + 4+0 ]
urn

(2.6)

The normal product equations nf motion and the Zimmerman identity yield the
anomalous axial current non-conser.~ation equation

(2.7)

with N*
i

another gauge invariant normal product of WW. The al~omaly
coeffic ent is given by

l=r
g urn

(2.8)

JE - 4(m+a) < T dS3N2[$+$-(3) ]T(,l)$(0,2) ‘roper .

In order to show that r has no radiative collections we apply the C--S
equation to r itself



~[g~-2]r = 4um[A* + 6*]r . (2.9)

*
where 6 is an extra C-S function for the inserted C-S equation. In order

to show that the RHS = O consider the axial cur~ent Ward identity for r itself,
this implies

4Um[A* + 6*]r =
-1

dv3N2[Q(3)]r (2.10)

with
Q = a$~z +b[@+O+eg$+$$e-g$] .--

Then apply the gauge Ward identity and supersymmetry Ward identity to N2[Q(3)]r
to show that the RHS of (2.10) equals zero. Thus

(2.11)

Since B # O this implies that r is given by the second order triangle graphs
only. (See Figure 1.)

‘$+ + ‘$+

0(1) 0(2) 4(2) $(1)

‘IGURE 1: Graphical Contributions To r.

Thus

Jr .& ak 1
4574

[k2-m2+iE]3

.~ g2
(2.12)

r
8 (16T)2 .

The div~rge~~e of the axial currenz is given by, recalling that
Z 4iu~&[D”,D’~]15 ,

‘5

= - 8i(m + a)[DDN2[$+~_] - ~bN2[O+4, ]]

(2.13)

15
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